Bioenergetics and metabolic pathways

BIOB111
CHEMISTRY & BIOCHEMISTRY

Session 17
Session Plan

- Introduction to Bioenergetics
- Metabolism
- Metabolic Pathways
- Metabolism & Cell Structure
- Mitochondria
- Compounds in Metabolic Pathways
- High-energy Phosphates
- Coenzymes NAD & FAD
- Coenzyme A
- Overview of Bioenergetic Pathways
Bioenergetics

• **Bioenergetics':**
 – The study of energy transformation / energy flow through living systems
 – Energy is involved in making & breaking chemical bonds in biological molecules

• Bioenergetics can also be defined as the study of energy relationships & energy transformations in living organisms

• The energy, required to **run the human body**, is obtained from ingested foods
 – Foods are broken down in several different catabolic pathways
Metabolism

Metabolism:
• The **total sum of all biochemical reactions** that maintain the living state of the cells within an organism

CATABOLISM: Breaking down
• Metabolic reactions in which large bio-molecules are broken down into smaller one
 – Energy is released
 – E.g. Breakdown of a protein into the individual amino acids

ANABOLISM: Building up
• Metabolic reactions in which small bio-molecules are joined together to form larger ones
 – Energy is required
 – E.g. Synthesis of proteins from individual amino acids
Catabolism

Larger molecules

Anabolism

Smaller molecules

Energy

Stoker 2104, Figure 23-1 p842
Metabolic Pathway

• A metabolic pathway a series of consecutive biochemical reactions,
 – Used to convert a starting material into an end product.

• The major metabolic pathways are similar for all life forms
 – Scientists study metabolic reactions in simple life forms to understand the same reactions in humans

• **Linear pathways** – series of reactions generates a final product

• **Cyclic pathways** – series of reactions regenerates the first reactant.

Examples:
- Linear metabolic pathway = breakdown of alcohol
- Cyclic metabolic pathway = Citric acid cycle
Metabolic Pathway Summary View

STAGE 1
The process of digestion changes large, complex molecules into relatively small, simpler ones.

STAGE 2
Small molecules from digestion are degraded to still smaller units, primarily the two-carbon acetyl group that becomes part of acetyl CoA.

STAGE 3
Acetyl CoA is oxidized to produce CO₂ and reduced coenzymes (NADH, FADH₂) in the citric acid cycle.

STAGE 4
NADH and FADH₂ facilitate ATP production through the electron transport chain and oxidative phosphorylation.
Metabolism & Cell Structure

• Cell structure knowledge is essential to understanding of metabolism

Prokaryotic Cell
• Single compartment organism
 – Bacteria only
 • No nucleus
 • Single circular DNA molecule present near center of the cell (nucleoid)

Eukaryotic Cell
• Multi-compartment cell
 – DNA is present in the membrane enclosed nucleus
 – Cell is compartmentalized into cellular organelles
 – ~1,000 times larger than bacterial cells
Eukaryotic Cell Diagram

Plasma membrane

Cytosol

Nucleus

Ribosomes (small dots)

Lysosome

Mitochondria

Stoker 2014, Figure 23-2 p843
Mitochondria

- Mitochondria are the power-stations of the cell that generate cellular energy
 - ATP

- Mitochondria have a double membrane
 - Inner & Outer membrane separated by the Intermembrane space

Mitochondrial Matrix
- The most interior region within the Inner membrane

Outer Mitochondrial Membrane
- 50% lipid & 50% protein
 - Permeable to most molecules & ions

Inner Mitochondrial Membrane
- 20% lipids & 80% protein
 - Highly impermeable to most substances

- The inner mitochondrial membrane is highly folded to increase surface area, forming Cristae
 - Enzymes, ATP synthase complex, are attached to cristae
A schematic representation of a mitochondrion, showing key features of its internal structure.
Compounds in Metabolic Pathways

- Several **Nucleotide-Containing Compounds** play an important role in metabolic pathways

- **Adenosine Phosphates**
 - Adenosine mono phosphate (AMP)
 - Nucleotide containing Adenine
 - Adenosine diphosphate (ADP)
 - Adenosine triphosphate (ATP)
 - Cyclic adenosine monophosphate (cAMP)

\[
\text{AMP} + \text{P}_i \rightarrow \rightarrow \rightarrow \text{ADP} + \text{P}_i \rightarrow \rightarrow \rightarrow \text{ATP}
\]
Compounds in Metabolic Pathways and where they are Required

• Many B vitamins function as coenzymes in carbohydrate metabolism
 – Without B vitamins the body would be unable to utilize carbohydrates as an energy source

• 6 B vitamins in carbohydrate metabolism:
 – Thiamin – as TPP (vitamin B1)
 – Riboflavin – as FAD, FADH₂ & FMN (vitamin B2)
 – Niacin – as NAD⁺ & NADH (vitamin B3)
 – Pantothenic acid – as CoA (vitamin B5)
 – Pyridoxine – as PLP (pyridoxal 5-phosphate)
 • vitamin B6
 – Biotin (vitamin H)
Adenosine Phosphates

Several Adenosine Phosphates exist:
- **AMP** – Adenosine Monophosphate – a DNA/RNA nucleotide
- **ADP** – Adenosine Diphosphate – key molecule in metabolic pathways
- **ATP** – Adenosine Triphosphate – key molecule in metabolic pathways

There are 2 different types of bonds between phosphates:

- **Phospho-ester bond** = the phosphate-ribose bond
- **Phospho-anhydride bond** = phosphate-phosphate bond
 - A very reactive bond, requires less energy to break
Adenosine Phosphates

Adenosine monophosphate (AMP)

Adenosine diphosphate (ADP)

Adenosine triphosphate (ATP)

Phosphoanhydride bonds

Phosphoester bond

Adenine

Ribose

Stoker 2014, Figure 23-4 p846
ATP Hydrolysis

- ATP & ADP molecules readily undergo hydrolysis reaction
 - Hydrolysis of ATP releases Phosphate groups (P_i) + energy

$\text{ATP} + \text{H}_2\text{O} \rightarrow \text{ADP} + P_i + H^+ + \text{energy}$

$\text{ADP} + \text{H}_2\text{O} \rightarrow \text{AMP} + P_i + H^+ + \text{energy}$

$\text{ATP} + 2\text{H}_2\text{O} \rightarrow \text{AMP} + 2P_i + 2H^+ + \text{energy}$
ATP Hydrolysis

ATP \rightarrow ADP + energy (7.3 kcal/mol) + P_i

ADP \rightarrow AMP + energy (7.3 kcal/mol) + P_i
ATP Function
• In cellular reactions ATP functions as:
 – Source of a phosphate group
 – Source of energy
• e.g. Conversion of glucose to glucose-6-phosphate
 – Requires phosphate from ATP

![Chemical structures showing the conversion of glucose to glucose 6-phosphate](Image)

The symbol \(\text{PO}_3^{2-}\) is a shorthand notation for a \(\text{PO}_3^{2-}\) unit.
Other Nucleotide Triphosphates

Other bases can also form nucleotide triphosphates:

- **UTP**: Uridine Triphosphate
 - Involved in carbohydrate metabolism

- **GTP**: Guanosine Triphosphate
 - Involved in carbohydrate & protein metabolism

- **CTP**: Cytidine Triphosphate
 - Involved in lipid metabolism
What is the difference between ATP and ADP?

What happens when the phosphoanhydride bond within ATP is broken?

Why is it necessary for cells to create a lot of ATP?
Attempt Socrative questions: 1 to 3

Google Socrative and go to the student login

Room name:

City name followed by 1 or 2 (e.g. PERTH1)

1 for 1st session of the week and 2 for 2nd session of the week
Flavin Adenine Dinucleotide (FAD)

FAD is a coenzyme required in many metabolic redox reactions

- FAD contains the B vitamin **Riboflavin** (vitamin B2)
 - **Flavin**: heterocyclic amine
 - **Ribitol**: alcohol derived from ribose
FAD Structure

- Flavin
- Ribitol
- Adenosine diphosphate (ADP)

Stoker 2014, Figure 23-6a p849
FAD Function

To be able to participate in redox reactions, FAD exists in 2 forms:

- **FAD** – oxidized form (lacks hydrogen)
 - Acts as an oxidising agent in redox reactions
 - Itself reduced to **FADH\textsubscript{2}**

- **FADH\textsubscript{2}** – reduced form (contains hydrogen)
 - Acts as an reducing agent in redox reactions
 - Itself oxidised to **FAD**

In metabolic pathways FAD:
- Continuously changes between its oxidized & reduced forms
- Functions as an electron carrier
 - Carries electrons to the electron transport chain

\[
2H^+ + 2e^- + \text{FAD} \rightleftharpoons \text{FADH}_2
\]

2 H atoms
FAD Function

\[
\begin{align*}
\text{Oxidised form} & : \text{R} - \text{C} - \text{C} - \text{R} + \text{FAD} & \rightarrow & \text{R} - \text{CH} = \text{CH} - \text{R} + \text{FADH}_2 \\
\text{Reduced form} & : \text{FADH}_2
\end{align*}
\]

\(R = \text{Ribitol} - \text{ADP} \)

Stoker 2014, p850
Nicotinamide Adenine Dinucleotide (NAD)

- NAD is another coenzyme required in many metabolic redox reactions
 - Contains B vitamin **Niacin** in the form of **Nicotinamide** (vitamin B3)
NAD Structure

Nicotinamide

Ribose

Adenine

Stoker 2014, Figure 23-6b p849
NAD Function

- To be able to participate in redox reactions, NAD exists in 2 forms:
 - **NAD\(^+\)** – oxidized form (lacks hydrogen)
 - Acts as an oxidising agent
 - Itself reduced to **NADH**
 - **NADH** – reduced form (contains hydrogen)
 - Acts as an reducing agent
 - Itself reduced to **NAD\(^+\)**

- In metabolic pathways NAD:
 - Continuously changes between its oxidized & reduced forms
 - Functions as an electron carrier
 - Carries electrons to the electron transport chain

\[
2H^+ + 2e^- + \text{NAD}^+ \iff \text{NADH} + H^+
\]

2 H atoms
NAD Function

\[
\text{NAD}^+ \quad \text{(oxidized form)} \quad \quad \text{R} = \quad \text{Ribose} \quad \text{ADP} \quad \text{NADH} \quad \text{(reduced form)}
\]

\[
\text{R-C-R} + \text{NAD}^+ \quad \rightarrow \quad \text{R-C-R} + \text{NADH} + \text{H}^+
\]

\[\text{2° alcohol} \]

Ketone
What types of chemical reactions do the NAD\(^+\) and FAD coenzymes help facilitate? Why?

Out of FAD and FADH\(_2\), which is the electron rich and which is the electron poor version of the coenzyme? Why?

Is the FADH\(_2\) coenzyme in the reduced or oxidised form? How did you determine this?
Attempt Socrative questions: 4 to 6

Google Socrative and go to the student login

Room name:

City name followed by 1 or 2 (e.g. PERTH1)

1 for 1st session of the week and 2 for 2nd session of the week
Coenzyme A (CoA)

Coenzyme A contains:

- 2-aminoethanethiol
 - The functional group of CoA is –SH (Thiol)

- B vitamin **Pantothenic acid** (vitamin B5)

- **Phosphorylated ADP** with a P_i on 3’ of the ribose
CoA Structure

2-Aminoethanethiol | Pantothenic acid | Phosphorylated ADP

H—S—CoA
CoA Function

• “A” refers to the metabolic function of CoA
 – To transfer of ACETYL groups (2 carbon fragment)

• Acetyl CoA is a fusion of the acetyl group and CoA
 – Acetyl CoA a central metabolite produced in carbohydrate, lipid and protein metabolism
Overview of Bioenergetic Pathways

- The energy, required to run the human body, is obtained from ingested foods
 - Foods broken down in several different catabolic pathways

- There are 4 general stages in the biochemical energy production:
 - **Stage 1**: Digestion
 - **Stage 2**: Acetyl group formation
 - **Stage 3**: Citric acid cycle
 - **Stage 4**: Electron transport chain & Oxidative phosphorylation
Digestion

- The digestion of carbohydrates, lipids & proteins:
 - Begins in the mouth >>> continues in the stomach >>> completed in the small intestine

- Many digestive enzymes are used in this process
 - Results in production of small molecules that can cross intestinal membrane into the blood
 - The digestion products are absorbed across the intestinal wall into the bloodstream & transported to all body cells

- End-products of digestion
 - Glucose & other monosaccharides from carbohydrates
 - Amino acids from proteins
 - Fatty acids & glycerol from fats & oils
Acetyl Group Formation

- The Acetyl group formation stage involves many reactions, some of which occur in the cytosol & others in the mitochondria.

- The small molecules from digestion like glucose and fatty acids are oxidized to produce the acetyl group.
 - Acetyl groups:

- Acetyl group attaches to CoA >>> forms Acetyl CoA
 - Acetyl CoA is a fusion of the acetyl group and CoA
 - Acetyl CoA is a central metabolite produced in carbohydrate, lipid, and protein metabolism
 - CoA is derived from the vitamin pantothenic acid
 - Acetyl CoA enters the citric acid cycle

\[
\text{CoA} \quad \leftrightarrow \quad \text{Acetyl CoA}
\]

\[
\text{H} \quad \text{S} \quad \text{CoA} \quad \leftrightarrow \quad \text{CH}_3 \quad \text{C} \quad \text{S} \quad \text{CoA}
\]
Citric Acid Cycle (CAC)

- Citric acid cycle (CAC) takes place in the mitochondria

- Acetyl groups are oxidized during the CAC
 - Produces CO$_2$, energy, NADH, FADH$_2$
 - Most energy derived from the CAC is trapped in reduced coenzymes NADH & FADH$_2$
 - Both coenzymes used in the electron transport chain
 - Some energy produced in CAC is lost in the form of heat
 - The CO$_2$ we exhale comes primarily from CAC

- Acetyl CoA

Digestion/metabolism of carbohydrate, protein, lipid

Stoker 2014, Figure 23-11 p861
ETC & OP

- Both ETC and OP take place in mitochondria

Electron transport chain:
- NADH & FADH$_2$ provide H$^+$ & electrons needed for ATP production
 - H$^+$ are transported to the inter-membrane space in mitochondria
 - Electrons are transferred to molecular O$_2$, which is reduced to H$_2$O

Oxidative phosphorylation:
- H$^+$ re-enter the mitochondrial matrix through the ATP-synthase enzyme
 - Produces ATP from ADP
 - ADP + P$_i$ → ATP
What happens when ETC and OP is interrupted?

- Without oxygen both ETC and OP will cease
 - Oxygen needed to accept electrons from the ETC

- Cyanide is deadly because it binds to one of the proteins in the ETC
 - Stops the electrons being passed down the chain to oxygen

- In both cases when ETC/OP stops
 - ATP production stops >>>> cell death
Common Metabolic Pathway

- The CMP is the total sum of the biochemical reactions of the:
 - Citric Acid Cycle
 - Electron Transport Chain
 - Oxidative Phosphorylation

- The CMP reactions constitute the **Common Metabolic Pathway (CMP)**
 - Produce energy in the form of ATP

- The reactions in citric acid cycle and ETC/OP are the same for all types of foods
 - Carbohydrates, fats & proteins

- The CMP takes place in the mitochondria
Attempt Socrative questions: 7 to 11

Google Socrative and go to the student login

Room name:

City name followed by 1 or 2 (e.g. PERTH1)

1 for 1st session of the week and 2 for 2nd session of the week
STAGE 1
The process of digestion changes large, complex molecules into relatively small, simpler ones.

STAGE 2
Small molecules from digestion are degraded to still smaller units, primarily the two-carbon acetyl group that becomes part of acetyl CoA.

STAGE 3
Acetyl CoA is oxidized to produce CO₂ and reduced coenzymes (NADH, FADH₂) in the citric acid cycle.

STAGE 4
NADH and FADH₂ facilitate ATP production through the electron transport chain and oxidative phosphorylation.

Stoker 2014, p859
Readings & Resources

COMMONWEALTH OF AUSTRALIA

Copyright Regulations 1969

WARNING

This material has been reproduced and communicated to you by or on behalf of the Australian College of Natural Medicine Pty Ltd (ACNM) trading as Endeavour College of Natural Health, FIAFitnation, College of Natural Beauty, Wellnation - Pursuant Part VB of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under the Act. Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act.

Do not remove this notice.