Session 4
Lymphatic and Haematological Disorders 2
Bioscience Department
Session Learning Outcomes

At the end of the session, you should be able to

- Classify various types of anaemia in terms of their aetiology and morphology.
- Identify the causes, pathophysiology and clinical manifestations of various types of anaemia.
- Suggest appropriate investigations and management for the conditions.
- Define and describe the haemoglobinopathies in terms of their cause, pathophysiology, role of hereditary trait, treatment and management.
Session Plan

- The Anaemias:
 - Classification of anaemia
 - Iron deficiency anaemia
 - Megaloblastic anaemia
 - Anaemia of chronic disease
 - Haemolytic anaemia
 - Haemoglobinopathies
 - Sickle cell anaemia
 - Thalassemia
Anaemia

Definition: A state in which there is decrease in the level of haemoglobin in the blood below the reference level for the age and sex of the individual.

- Normal reference range: (varies with age, gender and ethnic origin of a person)
 - Adult male 130-195 g/L
 - Adult female 115-165 g/L

Red cell characteristics seen in different types of anaemia: (A) microcytic and hypochromic red cells, characteristic of iron deficiency anaemia; (B) macrocytic and misshaped red blood cells, characteristic of megaloblastic anaemia; (C) abnormally shaped red blood cells seen in sickle cell disease; (D) normocytic and normochromic red blood cells,

Images from: Grossman, S, Porth, CM 2013, Porth’s pathophysiology, Concepts of Altered Health States, 9th edn, Lippincott Williams & Wilkins
Classification of Anaemia

- Aetiological classification of anaemia:
 - Inadequate nutrients to synthesize RBC
 - Iron deficiency anaemia, Megaloblastic anaemia
 - Excessive loss of RBC
 - Haemolytic anaemia: destruction of RBCs
 - Genetic defect in Haemoglobin synthesis
 - Thalassemia, Sickle cell anaemia
Classification of Anaemia

- Morphological classification of Anaemia
 - Based on size of RBC
 - Macrocytic
 - Normocytic
 - Microcytic
 - Based on Content of Haemoglobin in the RBC
 - Hypochromic
 - Normochromic
Classification of Anaemia

Fig. 24.19 Factors which influence the size of red cells in anaemia. In microcytosis, the MCV is < 76 fl. In macrocytosis, the MCV is > 100 fl.
(MCV = mean cell volume; RBC = red blood cell)
General Signs and Symptoms, Anaemia

- Symptoms:
 - Fatigue
 - Headache
 - Tinnitus
 - Fainting
 - Breathlessness
 - Angina
 - Palpitation
 - Intermittent claudication

- Signs:
 - Pallor
 - Tachycardia
 - Systolic flow murmur
 - Cardiac failure
 - Papilloedema
Iron deficiency anaemia

○ Aetiology:
 • Blood loss
 • Malabsorption or dietary deficiency of Iron
 • Increased physiological demands

○ Pathophysiology:
 Lack of Iron \rightarrow Decreased synthesis of Haemoglobin \rightarrow
 Decreased RBC size with decreased haemoglobin concentration \rightarrow
 Microcytic hypochromic anaemia \rightarrow
 Impaired oxygen transport
Iron deficiency anaemia

Iron digestion, absorption, enterocyte use, transport and distribution

Iron deficiency anaemia

Clinical features:

- Common symptoms of Anaemia
 - Pallor, Palpitation, Headache, lack of concentration, Shortness of breath
- Koilonychia
- Sore ulcers at the corner of the mouth (Glossitis and angular stomatitis)
- Severe cases may present with murmurs
Iron deficiency anaemia

- **Diagnosis:**
 - FBC: Haemoglobin, MCV, MCHC, haematocrit
 - Iron studies: Plasma Iron, Ferritin, Transferrin levels, Total Iron binding capacity
 - Peripheral smear of blood
 - Investigation of the cause

Normal peripheral blood smear

Iron deficiency anemia peripheral blood smear

http://library.med.utah.edu/WebPath/TUTORIAL/IRON/IRON.html#1
Iron deficiency anaemia

Management:
- Control chronic blood loss
- Increase dietary intake of iron
- Administering supplemental iron
- Iron transfusion in severe cases
Iron deficiency anaemia: Low level of haemoglobin in blood due to lack of iron

Blood loss, Malabsorption or dietary deficiency of Iron, Increased physiological demands

- **Lack of Iron**
 - Decreased synthesis of Haemoglobin
 - Decreased RBC size with decreased haemoglobin concentration
 - Microcytic hypochromic RBCs
 - Impaired oxygen transport to body tissues
 - Epithelial atrophy

- **Pallor**
 - Palpitation
 - Headache
 - Lack of concentration
 - Shortness of breath
 - Systolic murmurs

Diagnosis:
- FBC
- Iron studies
- Peripheral smear of blood
- Investigation of the cause

Management:
- Control chronic blood loss
- Increase dietary intake of iron
- Administering supplemental iron
- Iron transfusion in severe cases

- Pallor, brittle hair and nails
- Koilonychias
- Smooth tongue
- Glossitis and angular stomatitis
- Dysphagia and decreased acid secretion

- Impaired oxygen transport to body tissues
- Waxy pallor
- Palpitation
- Headache
- Lack of concentration
- Shortness of breath
- Systolic murmurs
- Epithelial atrophy

Colour Key:
- Clinical features
- Definition
- Aetiology
- Pathophysiology

© Endeavour College of Natural Health
www.endeavour.edu.au
Megaloblastic Anaemia

○ Aetiology:
 • Vitamin B12 deficiency:
 – Dietary deficiency
 – Gastric factors
 – Pernicious anaemia
 – Small bowel factors
 • Folic acid deficiency:
 – Dietary deficiency
 – Malabsorption
 – Increased demand
 – Drugs

Absorption of vitamin B12

Megaloblastic Anaemia

- Pathophysiology:
 - Lack of B12 and Folate \rightarrow Poor methionine metabolism \rightarrow High plasma levels of homocysteine and impaired DNA synthesis \rightarrow Cell with arrested nuclear maturation but normal cytoplasmic development (megaloblast) \rightarrow All proliferating cells (bone marrow cells, buccal mucosa, tongue, small intestine, cervix, vagina and uterus) exhibit megaloblastosis.
 - Lack of B12 \rightarrow Focal demyelination affecting the spinal cord, peripheral nerves, optic nerves and cerebrum \rightarrow Neurological symptoms
Megaloblastic Anaemia

Megaloblastic Anaemia

Clinical features:

Symptoms:
- Malaise
- Breathlessness
- Paraesthesiae
- Sore mouth
- Weight loss
- Altered skin pigmentation

- Impotence
- Poor memory
- Depression
- Personality change
- Hallucinations
- Visual disturbance
Megaloblastic Anaemia

• Signs
 - Smooth tongue
 - Angular cheilosis
 - Vitiligo
 - Skin pigmentation
 - Heart failure
 - Pyrexia

• Neurological findings in B12 deficiency
 - Glove and stocking paraesthesiae
 - Loss of ankle reflexes
 - diminished vibration sensation and proprioception
 - upper motor neuron signs
 - Dementia
 - Optic atrophy
 - Autonomic neuropathy
Megaloblastic Anaemia

- **Diagnosis:**
 - FBC: Haemoglobin, MCV, Blood cell counts
 - Serum Ferritin
 - Plasma lactate dehydrogenase (LDH)
 - Peripheral smear of blood
 - Bone marrow
 - Investigation of the cause
Megaloblastic Anaemia

- Management:
 - Management of Vit. B12 deficiency
 - Management of Folic acid deficiency

http://library.med.utah.edu/WebPath/HEMEHTML/HEME009.html
Megaloblastic anaemia: Low level of haemoglobin in blood due to lack of vitamin B12 or Folic acid.

Vitamin B12 deficiency:
- High plasma levels of homocysteine and impaired DNA synthesis
- All proliferating cells with arrested nuclear maturation but normal cytoplasmic development (megaloblastosis)
- Megaloblastosis in cells of bone marrow, buccal mucosa, tongue, small intestine, and genital tract
- Malaise, Breathlessness, weight loss, Smooth tongue, pyrexia, Angular cheliosis, Sore mouth, altered skin pigmentation, Impotence

Folic acid deficiency:
- Poor methionine metabolism
- Diagnosis: FBC, Serum Ferritin, Plasma lactate dehydrogenase (LDH), Peripheral smear of blood, Bone marrow, Investigation of the cause

Dietary deficiency:
- Malabsorption, Increased demand

Gastric factors:
- Pernicious anaemia
- Small bowel factors

Dietary deficiency:
- Dietary deficiency

Dental factors:
- Poor methionine metabolism

Upper motor neuron signs:
- Dementia,
- Optic atrophy
- Autonomic neuropathy

Clinical features:
- Malaise, Breathlessness, weight loss, Smooth tongue, pyrexia, Angular cheliosis, Sore mouth, altered skin pigmentation, Impotence

Definition:
- Clinical features
- Diagnosis
- Management
- Complications

Aetiology:
- Dietary deficiency
- Gastric factors
- Pernicious anaemia
- Small bowel factors

Pathophysiology:
- Focal demyelination affecting the spinal cord, peripheral optic nerves and cerebrum
- Paraesthesiae
- Loss of ankle reflexes
- Diminished vibration sensation and proprioception
- Upper motor neuron signs
- Dementia
- Optic atrophy
- Autonomic neuropathy

Management:
- Management of Vit. B12 deficiency
- Management of Folic acid deficiency
Anaemia of chronic disease

- **Aetiology:**
 - Chronic infection
 - Chronic inflammation
 - Neoplasia

- **Pathophysiology:**
 Pro-inflammatory cytokines in chronic disease →
 Induce hepcidin production by liver cells →
 Hepcidin binds to ferroportin and internalise ferroportin into iron storing cells →
 reduced release of iron →
 Low circulatory Iron →
 Reduced Erythropoiesis →
 Normocytic normochromic anaemia
Anaemia of chronic disease

Anaemia of chronic disease

- **Diagnosis:**
 - FBC: Haemoglobin, MCV
 - Iron studies: Serum Iron, Ferritin, Transferrin levels, Total Iron binding capacity
 - Serum soluble transferrin receptor
 - Bone marrow

- **Management:**
 - Measures to reduce the severity of the underlying disorder
Anaemia of chronic disease

- Differential diagnosis
 - Iron deficiency anaemia

Haemolytic anaemia

- **Definition:** Anaemia resulting from increased rate of RBC destruction

- **Types:**
 - **Extravascular haemolysis:**
 - Rapid red cell destruction in the reticuloendothelial cells in the liver or spleen.
 - No free haemoglobin in the plasma.
 - **Intravascular haemolysis:**
 - Red cell lysis within the blood stream
 - Free haemoglobin is released into the plasma
Haemolytic anaemia

Aetiology:
- Inherited causes of haemolysis
 - Red cell membrane defect: hereditary spherocytosis/elliptocytosis
 - Haemoglobin abnormalities: Thalassemia, sickle cell disease
 - Red cell enzyme deficiencies: G6PD deficiency, Pyruvate kinase deficiency, pyrimidine 5’nucleotidase deficiency
Haemolytic anaemia

- Aetiology:
 - Acquired causes of haemolysis
 - Immune: autoimmune diseases, haemolytic diseases of newborn, transfusion reactions, drug induced
 - Non immune – acquired membrane defects, mechanical causes, secondary to systemic diseases related to liver and kidneys, Infections, Drugs and chemicals, Burns
Haemolytic anaemia

- Clinical features:
 - Severe pallor, shortness of breath and heart failure
 - Episodic jaundice in some patients
 - Young children may show failure to thrive
 - Gall bladder stones due to excessive bilirubin formation in chronic cases
 - Increased pulmonary hypertension due to hypoxic conditions and right ventricular failure
Haemolytic anaemia

- **Diagnosis:**
 - Full blood count
 - Peripheral blood smear
 - Red blood cell enzymes
 - Serum bilirubin, lactate dehydrogenase
 - Urine and stool examination
 - Bone marrow
 - Coomb’s test for antibodies against red cells

- **Management:**
 - Treatment of underlying cause
 - Corticosteroids
 - Blood transfusion
Haemoglobinopathies

- Definition: The diseases caused by mutations of the genes encoding the globin chains of the haemoglobin molecule.

- Types:
 - Qualitative abnormalities
 - Alteration in the amino acids structure/sequence
 - Example: Sickle cell anaemia
 - Quantitative abnormalities
 - reduced rate of production of one or other of the globin chains
 - Example: Thalassemias
Sickle cell Anaemia

○ **Definition:** an inherited disorder in which an abnormal haemoglobin (HbS) leads to chronic haemolytic anaemia, pain, and organ failure.

○ **Aetiology:**
 - Inherited as an autosomal recessive trait
 - Substitution of one glutamic acid to valine in the amino acid chain of Beta Haemoglobin

○ **Pathophysiology:**
 Abnormal haemoglobin → Sickle shaped RBC → Early destruction of RBC
Mechanism of sickling and its consequences in sickle cell anaemia

Sickle cell Anaemia

- Clinical features:
 - Hypoxia
 - Acidosis
 - Dehydration
 - Infection
 - Acute syndromes:
 - Vaso-occlusive crisis
 - Sickle chest syndrome
 - Sequestration crisis
 - Aplastic crisis
 - Chronic organ damage
Sickle cell Anaemia

Sickle cell Anaemia

○ Diagnosis:
 • FBC: Hb
 • Blood film examination
 • HbS screening: Exposing red cells to a reducing agent such as sodium dithionite
 • Haemoglobin electrophoresis

○ Management:
 • Prophylaxis, vaccination
 • Aggressive rehydration, analgesics, O₂, antibiotics, transfusion
 • Allogeneic stem cell transplants
 • Hereditary trait counselling
Thalassaemia

- **Definition:** an inherited impairment of haemoglobin production, in which there is partial or complete failure to synthesise either the α- or β-globin chains of HbA.

- **Types:**
 - Beta thalassaemia
 - Thalassaemia minor
 - Thalassaemia major
 - Alpha thalassaemia
Thalassaemia

- **Aetiology:**
 - Beta thalassaemia: Multiple point mutations in the β-globin gene causing a defect in β-chain synthesis
 - Alpha thalassaemia: Deletion of alpha gene alleles on chromosome 16

- **Pathophysiology:**

 Genetic mutation → reduced rate of production of one or other of the globin chains → alpha to non-alpha chains ratio altered → the excess chains precipitate within RBC precursors → formation of abnormal haemoglobin with less affinity for oxygen → RBC membrane damage and haemolysis → Microcytic Hypochromic anaemia
Beta Thalassaemia

- **Clinical features:**
 - Severe, blood transfusion–dependent anemia
 - Bone marrow hyperplasia early in life.
 - Impaired bone growth and Bone deformities
 - Splenomegaly, Hepatomegaly

- **Complications:**
 - Iron overload leading to Cardiac, hepatic, and endocrine diseases and organ damage
Beta Thalassaemia

Management:
- Regular blood transfusions
- Iron chelation therapy
- Stem cell transplantation

Alpha Thalassaemia

- Clinical features: related to the number of gene deletions
 - One gene deletion: no clinical effect.
 - Two genes deletion: mild hypochromic anaemia.
 - Three gene deletion: Haemoglobin H disease.
 - Four gene deletion: stillborn baby (hydrops fetalis).

- Management:
 - Folic acid supplementation
 - Transfusion if required
 - Avoidance of iron therapy
Reading and Resources

- Crowley LV, 2012, *An Introduction to Human Diseases – Pathology and Pathophysiology Correlations*, 9th edn, Jones and Bartlett Learning
Reading and Resources

- Mosby’s dictionary of medicine, nursing and health professions 2013, 9th edn, Elsevier, St. Louis, MO.
- VanMeter, KC & Hubert, RJ 2014, *Gould’s pathophysiology for the health professions*, 5th edn, Elsevier, St Louis, MO.
COMMONWEALTH OF AUSTRALIA
Copyright Regulations 1969
WARNING
This material has been reproduced and communicated to you by or on behalf of the Endeavour College of Natural Health pursuant to Part VB of the Copyright Act 1968 (the Act).
The material in this communication may be subject to copyright under the Act.
Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act.
Do not remove this notice.