BIOS222
Pathology and Clinical Science 2 & 3

Session 15
Endocrine system disorders
2
Bioscience Department
Session Learning Outcomes

At the end of the session, you should be able to:

- Describe the function and role of the adrenal glands
- Describe the presentation, diagnosis and treatment of cortical hypofunction
- Describe the presentation, diagnosis and treatment of cortical and medullary hyperfunction
- Describe the clinical presentation of adrenal tumours
- Outline the aetiology, clinical presentation, diagnosis and treatment of hypopituitarism
- Detail the presentation and management of pituitary tumours, diabetes insipidus, acromegaly and hyperprolactinaemia
Session Plan

- Adrenal disease:
 - Overview of the adrenal glands
 - Cortical Hypofunction:
 - Adrenocortical insufficiency: Addison’s disease
 - Congenital adrenal hyperplasia
 - Cortical Hyperfunction:
 - Cushing’s syndrome
 - Primary Hyperaldosteronism
 - Medullary Hyperfunction:
 - Phaeochromocytoma
 - Tumours of the Medulla
 - Incidental adrenal mass
Session Plan

○ Hypothalamic and pituitary disease:
 • Overview of the hypothalamus and pituitary gland
 • Hypopituitarism
 • Pituitary tumour
 • Hyperprolactinaemia
 • Acromegaly
 • Diabetes insipidus
Overview of the Adrenal Glands
Adrenal Gland

- Situated on the upper pole of each kidney
- **Cortex:**
 - Glucocorticoids
 - Mineralocorticoids
 - Androgens
- **Medulla:**
 - Adrenaline
 - Noradrenaline

Tortora, GJ & Derrickson, B 2014, Principles of anatomy and physiology, 14th edn, John Wiley & Sons, Hoboken, NJ.
Adrenal Gland: Structure and Function

Adrenal Diseases

<table>
<thead>
<tr>
<th>Primary</th>
<th>Secondary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormone excess</td>
<td></td>
</tr>
<tr>
<td>Non-ACTH-dependent</td>
<td>ACTH-dependent</td>
</tr>
<tr>
<td>Cushing’s syndrome</td>
<td>Cushing’s syndrome</td>
</tr>
<tr>
<td>Primary hyperaldosteronism</td>
<td>syndrome</td>
</tr>
<tr>
<td>Phaeochromocytoma</td>
<td>Secondary hyperaldosteronism</td>
</tr>
<tr>
<td>Hormone deficiency</td>
<td></td>
</tr>
<tr>
<td>Addison’s disease</td>
<td>Hypopituitarism</td>
</tr>
<tr>
<td>Congenital adrenal hyperplasia</td>
<td></td>
</tr>
<tr>
<td>Hormone hypersensitivity</td>
<td></td>
</tr>
<tr>
<td>11 β-hydroxysteroid dehydrogenase type 2</td>
<td></td>
</tr>
<tr>
<td>deficiency</td>
<td></td>
</tr>
<tr>
<td>deficiency</td>
<td></td>
</tr>
<tr>
<td>Liddle’s syndrome</td>
<td></td>
</tr>
<tr>
<td>Hormone resistance</td>
<td></td>
</tr>
<tr>
<td>Pseudohypoaldosteronism</td>
<td></td>
</tr>
<tr>
<td>Glucocorticoid resistance</td>
<td></td>
</tr>
<tr>
<td>syndrome</td>
<td></td>
</tr>
<tr>
<td>Non-functioning tumours</td>
<td></td>
</tr>
<tr>
<td>Adenoma</td>
<td></td>
</tr>
<tr>
<td>Carcinoma (usually functioning)</td>
<td></td>
</tr>
<tr>
<td>Metastatic tumours</td>
<td></td>
</tr>
</tbody>
</table>

Cortical Hypofunction:
Adrenocortical Insufficiency

- **Definition:** It is an adrenal cortex hypo function resulting mainly due to inadequate secretion of cortisol and/or aldosterone.

- **Aetiology:**
 - **Secondary (↓ACTH):**
 - Withdrawal of suppressive glucocorticoid therapy
 - Hypothalamic or pituitary disease
 - **Primary (↑ACTH):**
 - Addison’s disease
 - Corticosteroid biosynthetic enzyme defects
 - Congenital adrenal hyperplasias
 - Drugs
Addison's disease

- **Definition:** It is a primary adrenocortical insufficiency resulting from partial destruction of the adrenal cortex, leading to adrenal cortex hormone deficiencies.

- **Aetiology:**
 - **Common causes:**
 - Autoimmune
 - Tuberculosis
 - HIV/AIDS
 - Metastatic carcinoma
 - Bilateral adrenalectomy
 - **Rare causes:**
 - Lymphoma
 - Intra-adrenal haemorrhage
 - Amyloidosis
 - Haemochromatosis
Addison’s disease

<table>
<thead>
<tr>
<th>Clinical Features:</th>
<th>Glucocorticoid insufficiency</th>
<th>Mineralocorticoid insufficiency</th>
<th>ACTH excess</th>
<th>Adrenal androgen insufficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight loss, anorexia</td>
<td>Hypotension</td>
<td>Pigmentation of:</td>
<td>Decreased</td>
<td></td>
</tr>
<tr>
<td>Malaise, weakness</td>
<td>Shock</td>
<td>Sun-exposed areas</td>
<td>body hair</td>
<td></td>
</tr>
<tr>
<td>Nausea, vomiting</td>
<td>Hyponatraemia (depletional)</td>
<td>Pressure areas</td>
<td>and loss of</td>
<td></td>
</tr>
<tr>
<td>Diarrhoea or constipation</td>
<td>Hyperkalaemia</td>
<td>(e.g. elbows, knees)</td>
<td>libido,</td>
<td></td>
</tr>
<tr>
<td>Postural hypotension</td>
<td></td>
<td>Palmar creases, knuckles</td>
<td>especially in</td>
<td></td>
</tr>
<tr>
<td>Shock</td>
<td></td>
<td>Mucous membranes</td>
<td>female</td>
<td></td>
</tr>
<tr>
<td>Hypoglycaemia</td>
<td></td>
<td>Conjunctivae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyponatraemia (dilutional)</td>
<td></td>
<td>Recent scars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypercalcaemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Addison’s disease
Addison’s disease

- Diagnosis:
 - Random hormone assessment: Plasma cortisol, renin, aldosterone
 - Short ACTH stimulation test
 - Electrolyte measurements: Na+, K+
 - Adrenal autoantibodies
 - Imaging of the adrenal glands
 - HIV test
Addison’s disease

- **Management:**
 - Glucocorticoid replacement therapy
 - Mineralocorticoid therapy (not always)
 - Adrenal androgen replacement (in women)
 - Regular schedule for meals and exercise
 - Medical alert bracelet

- **Complications:**
 - Adrenal crisis
 - Vitiligo
Adrenal crisis

- Definition: It is a life-threatening situation arising upon exposure to even a minor illness or stress if Addison’s disease is the underlying problem in a person.

- Clinical features:
 - Nausea
 - Vomiting
 - Muscular weakness
 - Hypotension
 - Dehydration
 - Vascular collapse
Adrenal crisis

Management:

- The *five Ss* of management:
 - Salt replacement
 - Sugar (dextrose) replacement
 - Steroid replacement
 - Support of physiologic functioning
 - Search for and treat the underlying cause
- Glucocorticoid replacement
- Mineralocorticoid therapy
Congenital Adrenal Hyperplasia

- **Definition:** It is a congenital disorder caused by an autosomal recessive trait leading to a deficiency of any of the enzymes necessary for the synthesis of cortisol.

- **Clinical features:**
 - Features of glucocorticoid and mineralocorticoid deficiency and androgen excess
 - Features of cortisol insufficiency and/or ACTH and androgen excess

- **Management:**
 - Glucocorticoid replacement
 - Anti-androgen therapy
Cortical Hyperfunction
Cushing’s Syndrome

- **Definition:** It refers to the manifestations of hypercortisolism from any cause.

Aetiology:

<table>
<thead>
<tr>
<th>ACTH dependent</th>
<th>Non-ACTH dependent</th>
<th>Pseudo-Cushing’s syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pituitary adenoma secreting ACTH</td>
<td>Adrenal adenoma or carcinoma</td>
<td>Alcohol excess</td>
</tr>
<tr>
<td>Ectopic ACTH syndrome</td>
<td>Iatrogenic (excess glucocorticoid therapy)</td>
<td>Primary obesity</td>
</tr>
<tr>
<td>ACTH therapy</td>
<td></td>
<td>Major depressive illness</td>
</tr>
</tbody>
</table>
Cushing’s Syndrome

Clinical features:

- Moon face
- Thinning of hair
- Truncal obesity
- Acne
- Facial plethora
- Buffalo hump
- Hirsutism or thinning hair
- Blue-red striae

- Menstrual irregularities
- Poor wound healing
- Osteoporosis
- Hyperglycaemia
- Muscle wasting
- Bruising
- Psychosis
- Hyperpigmentation
- Fluid retention
Cushing’s Syndrome

- Hair thinning
- Hirsutism
- Acne
- Plethora
- Moon face
- Peptic ulcer
- Loss of height and back pain from compression fracture
- Hyperglycaemia
- Menstrual disturbance
- May have exuberant callus with fractures
- Osteoporosis
- Tendency to infections with poor wound healing and little inflammatory response
- Psychosis
- Cataracts
- Mild exophthalmos
- Hypertension
- Centripetal obesity
- Striae
- Decreased skin thickness
- Wasting and weakness of proximal thigh muscles
- Bruising

Cushing’s Syndrome

○ Diagnosis:
 • To establish Cushing’s syndrome
 – 24 hours urinary free cortisol
 – low-dose/overnight dexamethasone suppression test
 – Late-night salivary cortisol
 • To define its cause
 – Plasma ACTH
 – Adrenal imaging with CT
 – Pituitary MRI
 – Corticotrophin-releasing hormone test
 – high-dose dexamethasone suppression test
 – CT/MRI thorax and abdomen
Cushing’s Syndrome

Management:

- Transsphenoidal removal of a pituitary adenoma or a hemihypophysectomy
- Cortisol replacement therapy
- Pituitary radiation therapy
- Unilateral or bilateral adrenalectomy
- Surgical removal of ectopic ACTH-producing tumors
- Pharmacologic agents that block steroid synthesis
Primary Hyperaldosteronism

- **Definition:** It is an intrinsic abnormality of adrenal glands resulting in aldosterone excess.

- **Aetiology:**
 - Adrenal adenoma secreting aldosterone (Conn’s syndrome)
 - Idiopathic bilateral adrenal hyperplasia
 - Glucocorticoid-suppressible hyperaldosteronism (rare)

- **Clinical features:**
 - Usually asymptomatic
 - Na+ retention or K+ loss
 - Oedema
 - Muscle weakness
 - Polyuria
 - Occasional tetany
Primary Hyperaldosteronism

○ Diagnosis:
 • Random blood biochemistry: serum K+, Na+
 • Plasma renin and aldosterone
 • Imaging: CT/MRI

○ Management:
 • Mineralocorticoid receptor antagonists
 • Unilateral adrenalectomy

Adrenal adenoma: The tumour is ‘canary yellow’ because of intracellular lipid accumulation.

Medullary Hyperfunction
Phaeochromocytoma

- Definition: It is a Rare neuro-endocrine tumour that secrete catecholamines (adrenaline, noradrenaline).

- Clinical features:
 - Hypertension
 - Paroxysms of:
 - Pallor
 - Palpitations, sweating
 - Headache
 - Anxiety
 - Abdominal pain, vomiting
 - Constipation
 - Weight loss
 - Glucose intolerance
Phaeochromocytoma

- **Diagnosis:**
 - Urinary catecholamines
 - CT/MRI abdomen

- **Management:**
 - Surgery
 - Radio/chemo therapy
Tumours of the Medulla
Incidental adrenal mass
Neuroblastoma

- Definition: It is a malignant tumour derived from the nerveoblasts. It secretes dopamine and catecholamines.

- Clinical features:
 - Hutchinson’s syndrome - bone metastasis with anaemia, limping and irritability due to bone pain
 - Pepper’s syndrome - liver with hepatomegaly
 - Rapid enlargement of the abdomen
 - Fatigue
 - Loss of appetite
 - Fever
 - Joint pain

- Management: Surgery
Incidental Adrenal Mass

- **Definition:** It is a mass lesion found unexpectedly in an adrenal gland by an imaging procedure done for other reasons.

- **Clinical features:**
 - Most are asymptomatic
 - Clinical signs and symptoms of
 - Glucocorticoid excess
 - Mineralcorticoid excess - Conn’s syndrome
 - Catecholamine excess
 - Androgen excess in women

- **Diagnosis:**
 - MRI and CT scan

- **Management:**
 - Surgery
Overview of the Hypothalamus and Pituitary Gland
Pituitary Gland

- Secretes many hormones:
 - Human Growth hormone (hGH)
 - Prolactin (PL)
 - Adrenocorticotrophic hormone (ACTH)
 - Thyroid-stimulating hormone (TSH)
 - Follicle-stimulating hormone (FSH)
 - Luteinizing hormone (LH)
 - Melanocyte-stimulating hormone (MSH)
 - Oxytocin (OT) – from Posterior Pituitary
 - Antidiuretic hormone (ADH) – from Posterior Pituitary

Tortora, GJ & Derrickson, B 2014, Principles of anatomy and physiology, 14th edn, John Wiley & Sons, Hoboken, NJ.
Hypothalamic - Pituitary Axis

<table>
<thead>
<tr>
<th>Anterior Pituitary cells</th>
<th>Hormone from pituitary</th>
<th>Regulatory hormone from hypothalamus</th>
<th>Target organ</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somatotrophs</td>
<td>hGH</td>
<td>GHRH, GHIH</td>
<td>Bones, muscles, liver, body</td>
<td>Growth and development</td>
</tr>
<tr>
<td>Lactotrophs</td>
<td>PRL</td>
<td>PRH, PIH</td>
<td>Mammary Glands</td>
<td>Production of milk and lactation</td>
</tr>
<tr>
<td>Thyrotrophs</td>
<td>TSH</td>
<td>TRH</td>
<td>Thyroid Gland</td>
<td>Release of thyroid hormones T3/T4</td>
</tr>
<tr>
<td>Corticotrophs</td>
<td>MSH</td>
<td>CRH</td>
<td>Skin</td>
<td>Pigmentation</td>
</tr>
<tr>
<td></td>
<td>ACTH</td>
<td>CRH</td>
<td>Adrenal cortex</td>
<td>Release of corticoids</td>
</tr>
</tbody>
</table>
| Gonadotrophs | FSH | GnRH | Gonads | M: Sperm production and release of testosterone
| | LH | GnRH | Gonads | F: follicular development and release of oestrogen/progesterone |
Pituitary Diseases
Hypopituitarism

- **Definition:** It describes combined deficiency of any of the anterior pituitary hormones.

- **Aetiology:**
 - **Structural:**
 - Pituitary tumours
 - Meningiomas
 - **Inflammatory:**
 - Sarcoidosis
 - Haemochromatosis
 - TB
 - **Congenital deficiencies:**
 - GNRH
 - GHRH
 - TRH
 - CRH
 - **Functional:**
 - Chronic illness
 - Excessive exercise.
Hypopituitarism

Clinical features:
- Growth hormone
 - Lethargy
- Gonadotrophins
 - Lethargy
 - Loss of libido
 - Hair loss
 - Amenorrhoea
- ACTH
 - Lethargy
 - Postural hypotension
 - Pallor
 - Hair loss
- TSH
 - Lethargy
- Vasopressin (ADH) (usually post-surgical)
 - Thirst and polyuria
Hypopituitarism

- Diagnosis:
 - Tests to identify Pituitary hormone deficiency
 - MRI or CT scan of brain
 - Further investigations to exclude infectious or infiltrative causes

Hypopituitarism

- Management:
 - Acutely ill patients:
 - Similar to adrenocortical insufficiency
 - Chronic condition:
 - Chronic hormone replacement
 - Specific treatment for the underlying causes
Pituitary Tumours

- Definition: Mass lesions found in or around the pituitary gland.

- Clinical features:
 - Headache
 - Visual field defects
 - Optic atrophy
 - Acute-onset hypopituitarism
Pituitary Tumours

○ Diagnosis:
 • MRI and CT scan
 • Biopsy

○ Management:
 • Surgery
 • Radiotherapy
 • Treat associated hypopituitarism
Hyperprolactinaemia

- Definition: Hyperprolactinaemia is a common abnormality which usually presents with hypogonadism and/or galactorrhoea.

- Aetiology:
 - Physiological: Stress, Pregnancy, Exercise, A baby crying
 - Drugs: Antipsychotics, Antidepressants, Dopamine depleting drugs
 - Pathological: Primary hypothyroidism, Pituitary tumours, Renal failure
Hyperprolactinaemia

○ Clinical features:
 • Women
 – Secondary amenorrhoea
 – Anovulation
 – Infertility
 • Men
 – Decreased libido
 – Reduced shaving
 – Lethargy
Hyperprolactinaemia

- **Diagnosis:**
 - Prolactin levels
 - Gonad function tests
 - T_4 and TSH levels

- **Management:**
 - Treat underlying cause
 - Dopamine agonist therapy
Acromegaly

- Definition: Acromegaly is caused by growth hormone (GH) secretion after the epiphyseal closure in adults from a pituitary tumour, usually a macroadenoma, and carries an approximate two-fold excess mortality when untreated.

- Clinical features:
 - Headache
 - Sweating
 - Features of pituitary tumours
 - Coarse facial features
 - Thick skin
 - Enlarged organs
 - Hypertension
 - Cardiomyopathy
 - Excessive sweating
Acromegaly

- Headache
- Enlargement of lips, nose and tongue
- Cardiomyopathy
 - Cardiovascular disease (2–3 × 1)
- Hypertension
- Enlargement of liver
- Enlargement of hands
 - Arthropathy
 - Carpal tunnel syndrome
- Skull growth – prominent supraorbital ridges with large frontal sinuses
- Prognathism (growth of lower jaw)
- Increased sweating
- Thickened skin
- IGT (25%)/type 2 diabetes (10%)
- Colonic cancer (2–3 × 1)
- Myopathy
- Enlargement of feet
 - Increased heel pad thickness

Acromegaly

Images from:
Tortora, GJ & Derrickson, B 2014, Principles of anatomy and physiology, 14th edn, John Wiley & Sons, Hoboken, NJ.
http://trialx.com/curetalk/wp-content/blogs.dir/7/files/2011/05/diseases/Acromegaly_And_Gigantism-1.jpg
http://www.helpfulhealthtips.com/acromegaly/
Acromegaly

- **Diagnosis:**
 - GH levels during oral glucose test
 - Pituitary function tests
 - Prolactin levels
 - Colonoscopy for colonic neoplasms screening

- **Management:**
 - Surgery
 - Radiotherapy
 - Drugs to lower GH secretion
Diabetes Insipidus

- Definition: It is characterised by the persistent excretion of excessive quantities of dilute urine and by thirst due to deficient or unresponsive ADH.

- Classification:
 - Cranial diabetes insipidus: There is deficient production of ADH by the hypothalamus
 - Nephrogenic diabetes insipidus: the renal tubules are unresponsive to ADH.
Diabetes Insipidus

- Aetiology:
 - Cranial
 - Structural hypothalamic or high stalk lesion
 - Idiopathic
 - Genetic defect of enzymes for biosynthesis of ADH
 - Nephrogenic
 - Genetic defect for ADH receptors
 - Metabolic abnormality
 - Drug therapy
 - Poisoning
 - Chronic kidney disease
Diabetes Insipidus

- Clinical features:
 - **Polydipsia**
 - **Polyuria** (5–20 L or more of urine in 24 hours)
 - Conscious patients with intact thirst mechanism:
 - Maintain adequate fluid intake
 - Unconscious patients/ with damage to the hypothalamic thirst centre:
 - Diabetes insipidus is potentially lethal.
Diabetes Insipidus

- **Diagnosis:**
 - Water deprivation test

- **Management:**
 - Demopressin
 - Thyozide diuretics, amiloride
 - NSAIDs
Reading and Resources

- Crowley LV, 2012, *An Introduction to Human Diseases – Pathology and Pathophysiology Correlations*, 9th edn, Jones and Bartlett Learning
Reading and Resources

- Mosby’s dictionary of medicine, nursing and health professions 2013, 9th edn, Elsevier, St. Louis, MO.
- VanMeter, KC & Hubert, RJ 2014, *Gould's pathophysiology for the health professions*, 5th edn, Elsevier, St Louis, MO.
COMMONWEALTH OF AUSTRALIA
Copyright Regulations 1969
WARNING
This material has been reproduced and communicated to you by or on behalf of the Endeavour College of Natural Health pursuant to Part VB of the Copyright Act 1968 (the Act). The material in this communication may be subject to copyright under the Act. Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act.
Do not remove this notice.