WHMC311

Session 14

Nervous System Disease Part I

Naturopathic Medicine Department
Topic Overview

- Overview of principles and considerations in herbal management of the nervous system condition pain.

- Review of herbal actions, indications, applications and contraindications of: analgesics, sedatives, hypnotics, tranquilisers, anti-spasmodics, relaxants, nerve tonics, nerve trophorestoratives, cognition enhancers and neuroprotectives.
Naturopathic Diagnostics: NS

- Dysfunction of the Central Nervous System can be seen in abnormalities in the size and shape of the pupil.
- Also at the following regions: cerebral (brain) area, spinal area, adrenal area, nerve rings and iris fibre signs.
- Dysfunctions of the Autonomic Nervous System may also be seen in Autonomic Nervous Wreath size, shape, colour and texture abnormalities.

(Jensen, 1952)
Herbal Medicine for the NS

Receptor Activity
- Herbal remedies are not directly comparable to conventional drugs in terms of direct action.
- It is most likely that the primary effect of plant constituents on the nervous system is on the synaptic junctions.
- Communication junctions are in receptor sites on pre and post synaptic membrane.

(Bone & Mills 2013, p.270)
Receptor Activity

- Ca channel activity – opioid alkaloids, ginseng saponins, coumarin, scopolamine (Capillaris) etc.
- Adrenergic effects – Ephedra, ephedrine, pseudoephedrine, Angelica sinesis and Cnidium monnieri (Beta-2-adrenergic)
- Acetylcholine – Solanacea family - Nicotiana tabacum (tobacco) etc.
- GABA and benzodiazepine – Valeriana officinalis, Salvia miltiorrhiza
- Dopaminergic – Mucuna pruriens, Polygala tenuifolia, Corydalis ambigua

(Bone & Mills 2013, p.270-271)
Pain

- Pain is a disagreeable subjective physiological and psychosocial experience that often serves a biological purpose (warning of injury)

- Highly subjective, pain does not necessarily correlate with the degree of tissue damage

(Sinclair, 2014, p.803)
Pain Classification

- Somatogenic (direct physiological mechanism or insult)
 - Nociceptive (ongoing activation)
 - Neuropathic (neurological dysfunction)

Or

- Psychogenic (non organic origin)

 - Acute (lasting less than 4 weeks)

Or

 - Chronic (longer than 12 weeks)

(Sinclair, 2014, p.803-6)
Pain Management

- Classify/asses the pain
- Identify the cause
- Pain amelioration
- Address the underlying cause
- Address comorbidities (depression, insomnia etc.)
- Enhance mental resilience
- Lifestyle modifications
- Close patient monitoring
- Address social factors

(Sinclair, 2014, p.806-7)
Treatment Considerations

- Ameliorate pain and reduce suffering
 - *Eschscholzia californica* (GABA binding and anxiolytic, possibly inhibit catecholamine degradation, synthesis of adrenaline and bind to opiate and benzodiazepine receptors)
 - *Corydalis ambigua* (tetrahydropalmatine – sedative, analgesic, dopamine receptor antagonist)
 - *Passiflora incarnate* (anxiolytic, hypnotic and mild sedative – possibly secondary clinical benefit)
 - *Piper methysticum* (anxiolytic, hypnotic, sedative and skeletal muscle relaxant, lactones DHK and DHM shown analgesic effect via non-opiate pathways)

(Sinclair, 2014, p.809)
Treatment Considerations

- Ameliorate pain and reduce suffering
 - *Harpagophytum procumbens* (iridiod glycosides – anti-inflamm and analgesic, possible iNOS and COX-2 expression through inhibiting NF-kB and reducing COX-1 activity)
 - *Salix alba* (Acetyl group to salicylic acid led to NSAID and Asprin development; hyaluronidase/lipoxygenase inhibition, free radical scavenging may contribute to anti-inflammatory and analgesic action)
 - *Piscidia erythrina* (central analgesic activity)
 (Sinclair, 2014, p.810)
Indications for Herbal Analgesics

- Pain associated with inflammation:
 - Arthritis
 - Tendonitis
 - Myalgia

- Pain associated with vascular spasm:
 - Migraine
 - Angina
 - Intermittent claudication

- Pain associated with visceral spasm:
 - Gall bladder
 - Urinary tract
 - Intestinal colic
 - Spasmodic dysmenorrhea

- Neuralgic pain (in limited cases)
 - Shingles
Analgesics

- Some traditional herbal analgesics include:
 - *Corydalis spp* (Corydalis)
 - *Eschscholzia californica* (Californian poppy)
 - *Salix alba* (Willow bark)
 - *Piscidia erythrina* (Jamaican Dog Wood)
 - *Anemone pulsatilla* (Pasque flower)
 - *Piper methysticum* (Kava)

- Topical Analgesics
 - *Mentha × piperita* (Peppermint essential oil)
 - *Capsicum minimum* (Cayenne)
 - *Arnica montana* (Arnica)
Corydalis ambigua

- Actions
 - Bitter, sedative, hypnotic, analgesic, cardioprotective, anti-arrythmic

- Uses
 - Pain, insomnia, cardiac arrythmia, myocardial ischemia

- Contraindications
 - Pregnancy
Treatment Considerations

- Reduce local and systemic inflammation
 - Topical anaesthetics – *Capsicum frutescans*, *Piper methysticum*, *Gaultheria procumbens* (Wintergreen oil), *Syzigium aromaticum*
 - Systemic - *Zingiber officinale*, *Serenoa repends*, *Curcuma longa*, *Glycyrrhiza glabra*, *Harpagophytum procumbens*, *Boswellia serrata*, *Marticaria recutita*, *Arnica montana*, *Salix alba*

- Support the immune system
 - Dysfunction may impact on autoimmune/infectious disease pain presentation (*Hemidesmus indicus*, *Tylophora indica*, *Echinacea spp.*, *Uncaria tomentose*, *Andrographis paniculata*, *Astragalus membranaceus*, medicinal fungi)

(Sinclair, 2014, pp.810-812)
Treatment Considerations

- Support the nervous system
 - Psychological consequence of pain exposure and specific painful diseases affecting the NS such as herpes zoster etc.
 - Adaptogens and nervine tonics
 - Address insomnia if present - Sedatives and hypnotics
 - Psychological – CBT referral, mindfulness/meditation, anti-depressants and/or anxiolytics

(Sinclair, 2014, p.812-814)
Herbal Sedatives, Hypnotics & Anxiolytics

<table>
<thead>
<tr>
<th>Sedatives</th>
<th>Hypnotics</th>
<th>Anxiolytics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Withania, Bacopa</td>
<td>Californian poppy</td>
<td>Bacopa</td>
</tr>
<tr>
<td>Bugle weed</td>
<td>Hops</td>
<td>Californian poppy</td>
</tr>
<tr>
<td>Californian poppy</td>
<td>Kava</td>
<td>Oats Green</td>
</tr>
<tr>
<td>Chamomile, Cramp Bark</td>
<td>Mexican Valerian</td>
<td>Kava</td>
</tr>
<tr>
<td>Hops, Jamaican Dog Wood</td>
<td>Valerian</td>
<td>Lavender</td>
</tr>
<tr>
<td>Kava, Lemon balm</td>
<td>Passionflower</td>
<td>Mexican Valerian</td>
</tr>
<tr>
<td>Lime Flowers</td>
<td></td>
<td>Valerian</td>
</tr>
<tr>
<td>Mexican Valerian</td>
<td></td>
<td>Neem Leaf</td>
</tr>
<tr>
<td>Valerian, Mistletoe</td>
<td></td>
<td>Passionflower</td>
</tr>
<tr>
<td>Passionflower</td>
<td></td>
<td>Ziziphus</td>
</tr>
<tr>
<td>Peppermint, Skullcap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ziziphus, Wild Cherry</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It can be seen from this table that many of our nervine herbs cover a wide range of nerve related actions.
Herbal Sedatives, Hypnotics & Anxiolytics

- Indications
 - Modern tension and anxiety syndromes (short term or intermittent use)
 - Insomnia – difficulty getting to sleep first thing at night.
 - Weaning off conventional sedative prescriptions
 - Restlessness during convalescence
Herbal Sedatives, Hypnotics & Anxiolytics

- Contraindications
 - Generally milder than prescribed sedatives and should not be seen as immediate substitutes in more serious indications.
 - It would be unwise and possibly dangerous to stop strong medication without careful planning.
 - Insomnia marked by increasing restlessness during the early morning
 - Depression
Antispasmodics and Relaxants

- Some traditional herbal antispasmodics and relaxants:
 - *Viburnum opulus*
 - *Dioscorea villosa*
 - *Leonurus cardiaca*
 - *Matricaria chamomilla*
 - *Passiflora incarnata*
 - *Piper methysticum*
 - *Scutellaria lateriflora*
 - *Tilia spp*
 - *Valeriana officinalis*
Antispasmodics and Relaxants

- **Indications:**
 - Anxiety, irritability and restlessness, including in children
 - Sleeplessness due to anxiety and irritability
 - Nervous dyspepsia
 - Irritable bowel and intestinal colic
 - Tension headache
 - Spasmodic dysmenorrhoea
 - Antispasmodics and relaxants may be taken as hot infusions, though the ordinary tea bag may not be sufficiently strong compared with a tradition brew.
Nervine Tonics & Nervous Trophorestoratives

- Many conditions of tension are linked with fatigue, debility and depression

- A group of remedies have emerged to meet the needs of a modern stressed society

- Anti-depressants: *Hypericum perforatum, Lavandula officinalis, Crocus sativa, Rhodiola rosea*
Nervine Tonics & Nervous Trophorestoratives

• Avena sativa
• Hypericum perforatum
• Scutellaria laterifolia
• Turnera aphrodisiaca
• Verbena off.
• Withania somnifera
Nervine Tonics & Nervous Trophorestoratives

- Indications:
 - Nervous exhaustion
 - Neuralgia, herpes infections
 - Depressive states
 - Insomnia (waking in the small hours after getting to sleep easily)
 - Convalescence
 - Neurasthenia
Nervine Tonics & Nervous Trophorestoratives

- Contraindications:
 - True trophorestoratives are almost nutritive in their effects, with few risks of adverse effects except in those patients with extremely debilitated constitutions.

- Application:
 - May be taken as required or before food.
 - Long term therapy with trophorestoratives is generally the norm.
Pain Example: Headaches

- Headaches – pain located above the orbitomeatal line.
 Primary:
 - Tension-type
 - Cluster
 - Migraine - disabling, primary headache, characterised by unilateral pulsing pain. With or without aura

Secondary:
- Cranial or cervical vascular disorders, non-vascular disorders e.g. hypertension
- Substance or withdrawal, infection, homeostatic disorder, psychiatric

(Cottingham, 2014, p.330-331)
Pharmaceutical Management

Non-Opioid Analgesics - Paracetamol

Mode of Action
- Inhibits prostaglandin production within the CNS, with some COX inhibition (no anti-inflammatory benefits) giving it analgesic and antipyretic properties.

Side Effects
- Occasional incidences of skin rash & nausea if used within therapeutic dose.
- Paracetamol overdose (10-15gms or 20-30 tablets) will cause severe liver damage due to depletion of glutathione, and possibly lead to death. Doses of 50 tablets is usually fatal unless quickly antidoted with acetyl cysteine.
- Liver toxicity appears to be linked to the concomitant use of excessive quantities of alcohol, or overdose

(Bryant & Knights, 2007; Bullock et.al. 2007)
Pharmaceutical Management

Non-steroidal Anti-inflammatory Drugs (NSAIDs) – ibuprofen, aspirin, diclofenac, indomethacin, piroxicam

Mode of Action
- Non-selectively inhibit the synthesis and release of prostaglandins by inhibiting the cyclo-oxygenase (COX) enzymes in both COX-1 & COX-2 pathways. Also inhibits platelet aggregation.

Side Effects
- Gastro-intestinal (dyspepsia, nausea, vomiting, diarrhoea, constipation, gastritis, and may all potentially lead to ulceration and haemorrhage (COX-1 inhibition)
- Skin reactions, rash, sodium retention, may precipitate asthma attacks.

(Bryant, 2003)
Pharmaceutical Management

COX-2 selective NSAIDs – Celecoxib

Mode of Action
- COX-2 is formed in inflammatory conditions – thus it is this pathway that would seem most appropriate to target when trying to reduce inflammation and pain (Bryant, 2003).
- Don’t inhibit COX-1 so have no GIT side effects or alter platelet aggregation. Useful for patients that can’t use non-specific NSAIDs.

Side Effects
- Associated with an increased risk of cardiovascular and thrombotic adverse effects.
- Renal damage due to inhibition of vasodilator prostaglandins resulting in heart failure and hypertension in some patients.
 (Bryant & Knights, 2007; Bullock et.al. 2007)
Pharmaceutical Management

Opioids – Opium, Morphine, Codeine, Oxycodone, Pethidine, Tramadol etc...

Mode of Action
- Opioids stimulate opioid receptors inhibiting the release of substance P from the dorsal horn neurons reducing pain sensations and inhibiting local inflammatory reactions.
- Euphoric action inhibits pain perception.
- Opiate analgesics are useful for relieving intense pain, non-responsive to non-opioid analgesics
- The response can vary dramatically between different opioid drugs, with different rates of absorption
- The more lipophilic the agent, the better absorbed and the greater the ability to cross the blood-brain-barrier

(Bryant & Knights, 2007; Bullock et.al. 2007)
Treatment Aims

- Establish the type of headache and underlying cause
- Address of risk factors and triggers (e.g. food sensitivities and allergic responses)
- Reduce pain and inflammation
- Ensure optimal nutrition and hydration
- Consider detoxification programs to manage medication overuse headache syndrome
- Assess body mechanics and spinal alignment – refer
- Address lifestyle – exercise, stress reduction (work/life balance)

(Cottingham, 2014, pp.335-342)
<table>
<thead>
<tr>
<th>Herb</th>
<th>Action/Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleus, Zingiber & Turmeric</td>
<td>All work on prostaglandin pathway</td>
</tr>
<tr>
<td>Corydalis</td>
<td>Analgesic – very large doses required</td>
</tr>
<tr>
<td>Californian poppy</td>
<td>Analgesic</td>
</tr>
<tr>
<td>Willow Bark</td>
<td>Analgesic and anti-inflammatory</td>
</tr>
<tr>
<td>Chaste tree</td>
<td>If hormonal relationship</td>
</tr>
<tr>
<td>Rosemary</td>
<td>Migraine or hypertensive headache</td>
</tr>
<tr>
<td>Skullcap</td>
<td>Nervine</td>
</tr>
<tr>
<td>Valerian</td>
<td>Sedative, nervous excitability</td>
</tr>
<tr>
<td>Mistletoe</td>
<td>Hypertensive headaches and frequent headaches with flushing face</td>
</tr>
<tr>
<td>Lavender</td>
<td>For depression associated with digestive dysfunction</td>
</tr>
<tr>
<td>Catnip</td>
<td>Sedative and for nervousness</td>
</tr>
<tr>
<td>Passionflower</td>
<td>Nervousness, debility with fullness</td>
</tr>
</tbody>
</table>
Tanacetum parthenium

- Traditionally used for migraines (especially if better with warm applications)
- Serotonergic pathway addressed by inhibiting phospholipase, preventing release of 5-HT from platelets and polymorphonuclear leukocytes
- In-vitro – inhibits nitric oxide release (sensitise migraineurs to pain and activate vasodilation – trigger)
- May inhibit prostaglandin synthesis
- Long term treatment is necessary - can be up to six months before effects are noticed

(Cottingham, 2014, pp 335-343)
Neuralgia/Neuropathy

- Neuropathic pain pathophysiology is largely based on the causative aetiology in many instances; however, it is heavily characterised by dysfunction of pain fibres of the CNS.

Treatment considerations:

- Neuropathy
 - Neuro protective
 - *Ginkgo biloba*
 - Capillary protective
 - *Vaccinium myrtillus*

- Neuralgia
 - *Capsicum spp.*
Capsicum minimum

- Capsaicin is an active constituent from the fruit of *Capsicum minimum* and other species (Cayenne).
 - Binds to vanilllinoid receptors, promotes release of substance P, neurokinin, somatostatin and calcitonin from peripheral nerve fibres (particularly C fibres in the slow pain network). Initially worsens pain/itching
 - Repeated applications, C fibres are depleted of these neurotransmitters, and are no longer able to transmit pain or itch signals.
 - With continued use, this effect can be sustained indefinitely.

(Yarnell, Abascal 2008)
Capsicum minimum

- Conditions in which topical capsaicin has proven effective in double-blind trials include:
 - Various neuralgias
 - Diabetic neuropathy
 - Dialysis-induced pruritus
 - Psoriatic pruritus
 - Fibromyalgia
 - Osteoarthritis
 - Stump pain
 - Postmastectomy pain
 - Postherpetic neuralgia

(Yarnell, Abascal, 2008)
Herb-Drug Interactions

Opioids

Panax ginseng
- May reduce drug induced tolerance and decrease adverse effects (Stargrove et al. 2008)

Opioids – Codeine

Fiber
- May prevent gastric upset and constipation. Concurrent use of water, fibre, and water rich foods that assist with bowel motion may be beneficial.

Alcohol
- Impaired alertness, constipation, impaired judgment (Braun & Cohen, 2010)
Herb-Drug Interactions

Paracetamol
- Alcohol may have more potential to cause liver damage when taken together (Braun & Cohen, 2010)

- *Syzygium aromaticum* (Clove) oil due to potential hepatotoxicity of its eugenol content should not be used together (speculative) (Brinker 2010, p.104)

- *Cyamopsis tetragonolobus* (Guar gum seeds) and *Malus domestica* slows absorption due to slower gastric emptying (Brinker 2010, p.364)
Herb-Drug Interactions

NSAIDs - Aspirin

Capsaicin
- Found to protect gastric mucosa against aspirin-induced damage.

(Braun & Cohen, 2010)

Grapeseed extract
- Enhances antiplatelet and anti-inflammatory activity of aspirin and may ↑ risk of bleeding.

Allium sativum, Zingiber officinalis, Curcumin longa
- Inhibits COX & LOX pathways therefore enhancing the drug effectiveness. Additive effect.

(Sarris & Wardle, 2010)
Cognition Enhancement

- Cognition encompasses a broad range of brain processes, the health of which allows for social connectedness, a sense of purpose and the ability to function independently.

- Cognitive decline is significant in the elderly population. Alzheimer’s disease is the most common dementia. Cerebrovascular disease – brain lesions connected with cardiovascular health/risk factors

- Traditional herbal remedies address these
Bacopa monnieri

- A traditional Ayurvedic herb used as a brain tonic, and to improve memory and learning
- Also used to promote longevity, nervous deficit due to injury and stroke
- In India it is called Brahmi - as is Gotu Kola: *Centella asiatica*
- The two plants share similar uses, and they are sometimes confused in the literature
An Australian clinical trial examined the long-term effects of an extract of *Bacopa monnieri* on cognitive function in 54 healthy human volunteers (Calabrese et.al. 2008).

The study was of double-blind, placebo-controlled design in which subjects were randomly allocated to receive Bacopa or placebo.

Neuropsychological testing was conducted before treatment and at 5 and 12 weeks after treatment.
Bacopa monnieri

- After 12 weeks the largest cognitive change from Bacopa treatment was a time reduction for the Inspection Time (IT) test.

- IT is regarded as a measure of the integrity of the early stages of information processing and may act as a rate-limiting factor for cognition.

- This indicates that Bacopa significantly improved the speed of visual information processing.
Schisandra chinensis

- Lignans from *Schisandra chinensis* improved concentration, fine co-ordination and sensitivity in healthy young male adults as assessed by tasks such as threading a needle and telegraphic reception and transmission.
- Schisandra improved vision, enlarged the visual field, improved hearing and heightened skin sensory discrimination
- It was thought that those effects are central rather than peripheral.

(Chang HM 1987 as cited in Bone 2003, p.407)
Panax ginseng

- In a double-blind study on students given Ginseng over thirty-three days significant improvements in psychomotor ability and intellectual performance were observed.

- Nurses switching from day to night duty were evaluated for competence, mood, wellbeing and psychophysical performance in a double-blind clinical study of Ginseng versus placebo.

- Ginseng improved the scores for competence and mood, and performance on the psychophysical test.

(D’Angelo et al, 1986)
Pre-reading for next session

References

References

References

COMMONWEALTH OF AUSTRALIA

Copyright Regulations 1969

WARNING

This material has been reproduced and communicated to you by or on behalf of the Australian College of Natural Medicine Pty Ltd (ACNM) trading as Endeavour College of Natural Health, FIAFitnation, College of Natural Beauty, Wellnation - Pursuant Part VB of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under the Act. Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act.

Do not remove this notice.